A QSTR-Based Expert System to Predict Sweetness of Molecules
نویسندگان
چکیده
This work describes a novel approach based on advanced molecular similarity to predict the sweetness of chemicals. The proposed Quantitative Structure-Taste Relationship (QSTR) model is an expert system developed keeping in mind the five principles defined by the Organization for Economic Co-operation and Development (OECD) for the validation of (Q)SARs. The 649 sweet and non-sweet molecules were described by both conformation-independent extended-connectivity fingerprints (ECFPs) and molecular descriptors. In particular, the molecular similarity in the ECFPs space showed a clear association with molecular taste and it was exploited for model development. Molecules laying in the subspaces where the taste assignation was more difficult were modeled trough a consensus between linear and local approaches (Partial Least Squares-Discriminant Analysis and N-nearest-neighbor classifier). The expert system, which was thoroughly validated through a Monte Carlo procedure and an external set, gave satisfactory results in comparison with the state-of-the-art models. Moreover, the QSTR model can be leveraged into a greater understanding of the relationship between molecular structure and sweetness, and into the design of novel sweeteners.
منابع مشابه
Mutagenicity Prediction for Nitroaromatic Compounds Using Qstr Modeling
Objective: Nitroaromatic compounds are important industrial chemicals widely used in the synthesis of many diverse products including drugs, dyes, polymers, pesticides and explosives. However, the mutagenicity associated with nitroaromatic compounds is a toxicological feature which poses great concern. On the other hand, there are successful examples of non-mutagenic nitroaromatic molecules; in...
متن کاملDeveloping a fuzzy expert system to predict technology commercialization success
A majority of efforts in terms of technology commercialization have failed; however, the issue of commercialization and its high importance are agreed upon by policymakers, entrepreneurs, and researchers. This shows the high complexity of the commercialization process. One of the main solutions to overcome the commercialization problems is to predict the success of technology commercialization ...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملارائه الگوریتم جدید Fuzzy SARSA بهمنظور پیش بینی نوسانات سطح قند خون بیماران مبتلا به دیابت نوع یک
Background: One of the serious complications of type 1 diabetes is a sudden increase and drop in blood glucose levels causing risks of anesthesia and coma. Thus, an important step towards the optimal control of the disease is to use intelligent methods with low error rate and available information in order to predict and prevent such complications. In this paper, a combined Fuzzy SARSA algorith...
متن کاملPotential quality evaluation method for Radix Astragali based on sweetness indicators.
Sweetness is a traditional sensory indicator used to evaluate the quality of the popular Chinese herb Radix Astragali (RA). RA roots with strong sweetness are considered to be of good quality. However, neither a thorough analysis of the component(s) contributing to RA sweetness, nor a scientific investigation of the reliability of this indicator has been conducted to date. In this study, seven ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017